ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: M108989 Client: Alaskan Copper Works Date Received: 11/01/06 Project: Metro KC Comp, PO# M108989 Date Extracted: 11/02/06 Lab ID: 611011-01 10x Date Analyzed: 11/02/06 Data File: 611011-01 10x.014 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 100 60 125

 $\begin{array}{ccc} & & & Concentration \\ Analyte: & ug/L \ (ppb) \end{array}$ $\begin{array}{cccc} Chromium & 2,940 \\ Nickel & 3,640 \\ Copper & 2,940 \\ Zinc & 57.8 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank
Date Received: Not Applicable
Date Extracted: 11/02/06
Date Analyzed: 11/02/06
Matrix: Water
Units: ug/L (ppb)

Client: Alaskan Copper Works
Project: Metro KC Comp, PO# M108989
Lab ID: I6-418 mb
Data File: I6-418 mb.008
Instrument: ICPMS1
Operator: btb

Upper

Limit:

125

Lower Internal Standard: % Recovery: Limit: Germanium 97 60

Concentration
Analyte: ug/L (ppb)

Chromium <1
Nickel <1
Copper <1
Zinc <1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/10/06 Date Received: 11/01/06

Project: Metro KC Comp, PO# M108989, F&BI 611011

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS BY EPA METHOD 200.8

Laboratory Code: 611009-01 (Duplicate)

		Sample	Duplicate		Acceptance
Analyte	Reporting Units	s Result	Result	Difference	Criteria
Chromium	ug/L (ppb)	21.3	20.5	4	0-20
Nickel	ug/L (ppb)	312	309	1	0-20
Copper	ug/L (ppb)	69.3	68.3	1	0-20
Zinc	ug/L (ppb)	219	215	2	0-20

Laboratory Code: 611009-01 (Matrix Spike)

			~ ,	Percent	
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria
Chromium	ug/L (ppb)	20	21.3	117 b	50-150
Nickel	ug/L (ppb)	20	312	196 b	50-150
Copper	ug/L (ppb)	20	69.3	110 b	50-150
Zinc	ug/L (ppb)	50	219	109 b	50-150

Laboratory Code: Laboratory Control Sample

		a .1		The second secon	- Ą
Analyte	Reporting Unit		LCS	y Acceptanc Criteria	е
Chromium	ug/L (ppb)	20	101	70-130	13.7
Nickel	ug/L (ppb)	20	102	70-130	7,11
Copper	ug/L (ppb)	20	102	70-130	
Zinc	ug/L (ppb)	50	103	70-130	, På
	Chromium Nickel Copper	Chromium ug/L (ppb) Nickel ug/L (ppb) Copper ug/L (ppb)	Chromium ug/L (ppb) 20 Nickel ug/L (ppb) 20 Copper ug/L (ppb) 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analyte Reporting Units Level LCS Criteria Chromium ug/L (ppb) 20 101 70-130 Nickel ug/L (ppb) 20 102 70-130 Copper ug/L (ppb) 20 102 70-130

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 10, 2006

DUPLICATE COPY

INVOICE # 06ACU1110-1

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro KC Comp, PO# M108989, F&BI 611011 - Results of testing requested by Gerry Thompson for material submitted on November 1, 2006.

1 sample analyzed for Total Chromium, Copper, Nickel and Zinc	
by Method 200.8 @ \$80 per sample	\$ 80.00
Rush Charges (48 hr) 75% of \$80.00	60.00
	시설한 기본에서
Amount Due	\$ 140.00

FEDERAL TAX ID #(b) (6)

611011		e.	SAM	PLE (CHAL	N OF CU	JST	OD	Y	-	M	E	//-	0/-	06) •		AI5	
	•		Γ	SAMPL	ERS (s	ignature)							200				of		
Send Report To G. T					we	ME/NO ₂						PO #					ROUND 1	TIME	
Company Alaskas Copper Works				AMOT	or iva		ص					858	9	Standard (2 Weeks)					
Address 628 S. \$	Don Jens	- 8T		MEN	' ن	,	T				11,0	0 10)	Rush charges authorized by:					
City, State, ZIP Searn			4	REMAR	RKS	^						3.40					LE DISPO îter 30 day		
City, State, ZIF		1 2016	20			ASA	9										mples	3	
Phone # 806-382-873	Fax #	6-506-1	307 [Will	call w	ith instru	etions	
										A	NAL	YSES		UEST	ED				
	T 1 TD			01	m	# of)iesel	TPH-Gasoline	BTEX by 8021B	y 8260	SVOCs by 8270	15 A V6 7 A					Ŋ		
Sample ID	Lab ID	Date	Time	Sample	етуре	containers	TPH-Diesel	TPH-G	BTEX b	VOCs by 8260	SVOCs	HIES				78 EFFER A 1887	N	otes	
M 108989	01	11/1	1250	HZ	0	1				1	1	17		1			·		
77700101	1 01	17/1	7 4 -	110		 	_			-+		+	4-	+	╂	-			
		<u> </u>								_		_		_		-			
												.,							
											٠,								
		 					I				\dashv	-	\dashv	+	+	+-	 		
							-					-		-	-	+			
*																			
							\vdash					_	\top	+	+	\dagger			
			-			· .	-	╄	_				- -	-	+	+			
	*																		
Friedman & Bruya, Inc.	1	SIGNATU	JRE			PRIN	TNA	ME	'	Ц.	十		COM	PAN	Y		DATE	TIME	
3012 16th Avenue West	Relinquista	SV:			a	1							W				11/1/06	1:432	
Seattle, WA 98119-2029	Received by:	1100	Jano		Whan Phan FeB.														
Ph. (206) 285-8282	Relinquished		,			/1000/ 17					\dashv	1 .	10 <u>_</u>				1-10-0		
Fax (206) 283-5044	Received by:										-	···							
FORMS\COC\COC.DOC		···	·		i									Sam	nloc	roc	eived at	1/8°C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

November 10, 2006

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on November 1, 2006 from the Metro KC Comp, PO# M108989, F&BI 611011 project. There are 3 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ACU1110R